windows环境libevent搭建和demo分析

libevent框架之前有做过分析,这次是谈谈如何将libevent搭建在vs工作环境下,并且编写一个demo进行测试。测试过程中会再一次带大家分析消息是怎么传递的。我的libevent版本libevent-2.0.22-stable,用对应的vs命令工具进入该目录

https://cdn.llfc.club/winlibevent1.png

我的是Visual Studio 2008版本的Command Prompt
https://cdn.llfc.club/winlibevent2.png
执行成功后在libevent目录下生成三个lib
https://cdn.llfc.club/winlibevent3.png
之后用vs创建控制台项目
https://cdn.llfc.club/winlibevent4.png
生成成功后在项目目录里创建Include和Lib两个文件夹
https://cdn.llfc.club/winlibevent5.png
分别进入libevent这两个目录里边
https://cdn.llfc.club/winlibevent6.png
将内部的所有文件拷贝到Include文件夹里,event内容重复可以合并我们项目目录Include文件夹下的内容为
https://cdn.llfc.club/winlibevent7.png
将libevent库中的三个lib拷贝到项目的Lib文件夹里
下一步配置项目属性,完成编译
1、配置头文件包含路径,C++/General/Additional Include Directories 配置为相对路径的Include(因配置的路径不同而异)
https://cdn.llfc.club/winlibevent8.png
2、配置代码生成
C/C++ /Code Generation RuntimeLibrary 设置为MTD,因为库的生成是按照这个MTD模式生成的,所以要匹配
https://cdn.llfc.club/winlibevent9.png
3、配置 C/C++ /Advanced/Compile As Compile as C++ Code (/TP)
(因为我的工程用到C++的函数所以配置这个)网上有人推荐配置成TC的也可以,自己根据项目需要
https://cdn.llfc.club/winlibevent10.png
4、配置库目录
Linker/General/Additional Library Directories ..\Lib(根据自己的Lib文件夹和项目相对位置填写)
https://cdn.llfc.club/winlibevent11.png
5配置 Linker\Input\AdditionalLibraries ws2_32.lib;wsock32.lib;libevent.lib;libevent_core.lib;libevent_extras.lib;
https://cdn.llfc.club/winlibevent12.png
6 配置忽略项,可以不配置 输入\忽略特定默认库 libc.lib;msvcrt.lib;libcd.lib;libcmtd.lib;msvcrtd.lib;%(IgnoreSpecificDefaultLibraries)
生成lib后,不带调试信息,无法单步进函数里,所以要修改脚本:Makefile.nmake第二行CFLAGS=$(CFLAGS) /Od /W3 /wd4996 /nologo /Zi
到此为止项目配置好了,我们来写相关的demo代码

主函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
int main(int argc, char **argv)
{
struct event_base *base;
struct evconnlistener *listener;
struct event *signal_event;

struct sockaddr_in sin;

#ifdef WIN32
WSADATA wsa_data;
WSAStartup(0x0201, &wsa_data);
#endif
//创建event_base
base = event_base_new();
if (!base)
{
fprintf(stderr, "Could not initialize libevent!\n");
return 1;
}

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(PORT);
sin.sin_addr.s_addr = inet_addr("192.168.1.99");
//std::string ipstr = inet_ntoa(sin.sin_addr);
//std::cout << ipstr.c_str();

//基于eventbase 生成listen描述符并绑定
//设置了listener_cb回调函数,当有新的连接登录的时候
//触发listener_cb
listener = evconnlistener_new_bind(base, listener_cb, (void *)base,
LEV_OPT_REUSEABLE|LEV_OPT_CLOSE_ON_FREE, -1,
(struct sockaddr*)&sin,
sizeof(sin));

if (!listener)
{
fprintf(stderr, "Could not create a listener!\n");
return 1;
}

//设置终端信号,当程序收到SIGINT后调用signal_cb
signal_event = evsignal_new(base, SIGINT, signal_cb, (void *)base);

if (!signal_event || event_add(signal_event, NULL)<0)
{
fprintf(stderr, "Could not create/add a signal event!\n");
return 1;
}
//event_base消息派发
event_base_dispatch(base);

//释放生成的evconnlistener
evconnlistener_free(listener);
//释放生成的信号事件
event_free(signal_event);
//释放event_base
event_base_free(base);

printf("done\n");
return 0;
}

listener回调函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
static void listener_cb(struct evconnlistener *listener, evutil_socket_t fd,
struct sockaddr *sa, int socklen, void *user_data)
{
struct event_base *base = (struct event_base *)user_data;
struct bufferevent *bev;
//生成一个bufferevent,用于读或者写
bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE);
if (!bev)
{
fprintf(stderr, "Error constructing bufferevent!");
event_base_loopbreak(base);
return;
}
//设置了写回调函数和事件的回调函数
bufferevent_setcb(bev, NULL, conn_writecb, conn_eventcb, NULL);
//bufferevent设置写事件回调
bufferevent_enable(bev, EV_WRITE);
//bufferevent关闭读事件回调
bufferevent_disable(bev, EV_READ);
//将MESSAGE字符串拷贝到outbuffer里
bufferevent_write(bev, MESSAGE, strlen(MESSAGE));
}

一些基本参数

static const char MESSAGE[] = “Hello, NewConnection!\n”;

static const int PORT = 9995;
bufferevent的写回调函数

1
2
3
4
5
6
7
8
9
10
11
static void conn_writecb(struct bufferevent *bev, void *user_data)
{
//取出bufferevent 的output数据
struct evbuffer *output = bufferevent_get_output(bev);
//长度为0,那么写完毕,释放空间
if (evbuffer_get_length(output) == 0)
{
printf("flushed answer\n");
bufferevent_free(bev);
}
}

bufferevent的事件回调函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//仅仅作为事件回调函数,写自己想要做的功能就行
//最后记得释放buffevent空间
static void conn_eventcb(struct bufferevent *bev, short events, void *user_data)
{
if (events & BEV_EVENT_EOF)
{
printf("Connection closed.\n");
}
else if (events & BEV_EVENT_ERROR)
{
printf("Got an error on the connection: %s\n",
strerror(errno));/*XXX win32*/
}
/* None of the other events can happen here, since we haven't enabled
* timeouts */
bufferevent_free(bev);
}

信号终止函数

1
2
3
4
5
6
7
8
9
10
//程序捕捉到信号后就让baseloop终止
static void signal_cb(evutil_socket_t sig, short events, void *user_data)
{
struct event_base *base = (struct event_base *)user_data;
struct timeval delay = { 2, 0 };

printf("Caught an interrupt signal; exiting cleanly in two seconds.\n");

event_base_loopexit(base, &delay);
}

整个demo完成了。

下面分析下libevent如何做的消息传递和回调注册函数从main函数中的evconnlistener_new_bind入手

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
struct evconnlistener *
evconnlistener_new_bind(struct event_base *base, evconnlistener_cb cb,
void *ptr, unsigned flags, int backlog, const struct sockaddr *sa,
int socklen)
{
struct evconnlistener *listener;
evutil_socket_t fd;
int on = 1;
int family = sa ? sa->sa_family : AF_UNSPEC;

if (backlog == 0)
return NULL;

fd = socket(family, SOCK_STREAM, 0);
if (fd == -1)
return NULL;

if (evutil_make_socket_nonblocking(fd) < 0) {
evutil_closesocket(fd);
return NULL;
}

if (flags & LEV_OPT_CLOSE_ON_EXEC) {
if (evutil_make_socket_closeonexec(fd) < 0) {
evutil_closesocket(fd);
return NULL;
}
}

if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (void*)&on, sizeof(on))<0) {
evutil_closesocket(fd);
return NULL;
}
if (flags & LEV_OPT_REUSEABLE) {
if (evutil_make_listen_socket_reuseable(fd) < 0) {
evutil_closesocket(fd);
return NULL;
}
}

if (sa) {
if (bind(fd, sa, socklen)<0) {
evutil_closesocket(fd);
return NULL;
}
}
//cb = listener_cb, ptr = struct event_base *base;
listener = evconnlistener_new(base, cb, ptr, flags, backlog, fd);
if (!listener) {
evutil_closesocket(fd);
return NULL;
}

return listener;
}

evconnlistener_new_bind 完成了socket生成和绑定,并且内部调用evconnlistener_new

生成了evconnlistener* listener,将listener和socket绑定在一起。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
struct evconnlistener *
evconnlistener_new(struct event_base *base,
evconnlistener_cb cb, void *ptr, unsigned flags, int backlog,
evutil_socket_t fd)
{
struct evconnlistener_event *lev;
if (backlog > 0) {
if (listen(fd, backlog) < 0)
return NULL;
} else if (backlog < 0) {
if (listen(fd, 128) < 0)
return NULL;
}
//开辟evconnlistener_event大小区域
lev = mm_calloc(1, sizeof(struct evconnlistener_event));
if (!lev)
return NULL;
//lev -> base 表示 evconnlistener
//evconnlistener evconnlistener_ops 基本回调参数和回调函数结构体赋值
lev->base.ops = &evconnlistener_event_ops;
//evconnlistener_cb 设置为listener_cb
lev->base.cb = cb;
//ptr表示event_base 指针
lev->base.user_data = ptr;
lev->base.flags = flags;
lev->base.refcnt = 1;

if (flags & LEV_OPT_THREADSAFE) {
EVTHREAD_ALLOC_LOCK(lev->base.lock, EVTHREAD_LOCKTYPE_RECURSIVE);
}

// lev is evconnlistener_event
//lev->listener is event
//为lev->listener设置读回调函数和读关注事件,仅进行设置并没加入event队列
event_assign(&lev->listener, base, fd, EV_READ|EV_PERSIST,
listener_read_cb, lev);
//实际调用了event_add将事件加入event队列
evconnlistener_enable(&lev->base);

return &lev->base;
}

lev = mm_calloc(1, sizeof(struct evconnlistener_event));开辟了一个

evconnlistener_event* 空间,evconnlistener_event类型如下

struct evconnlistener_event {
struct evconnlistener base;
struct event listener;
};

该结构包含一个evconnlistener和event事件结构体

evconnlistener结构如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
struct evconnlistener {
//listener基本操作封装成一个结构体
//结构体包含操作的函数指针
const struct evconnlistener_ops *ops;
void *lock;
//listener回调函数,有新的连接到来会触发
evconnlistener_cb cb;
//listener有错误会触发这个函数
evconnlistener_errorcb errorcb;
//存储一些回调函数用到的参数
void *user_data;
unsigned flags;
short refcnt;
unsigned enabled : 1;
};

struct evconnlistener_ops {
    int (*enable)(struct evconnlistener *);
    int (*disable)(struct evconnlistener *);
    void (*destroy)(struct evconnlistener *);
    void (*shutdown)(struct evconnlistener *);
    evutil_socket_t (*getfd)(struct evconnlistener *);
    struct event_base *(*getbase)(struct evconnlistener *);
};

lev->base.ops = &evconnlistener_event_ops;这句就是对这个结构体指针赋值,evconnlistener_event_ops是一个实例化的结构体对象,里面包含定义好的操作函数

1
2
3
4
5
6
7
8
static const struct evconnlistener_ops evconnlistener_event_ops = {
event_listener_enable,
event_listener_disable,
event_listener_destroy,
NULL, /* shutdown */
event_listener_getfd,
event_listener_getbase
};

对lev->base其余参数的赋值就不一一解释了。接下来看一下event_assign函数内部实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
{
if (!base)
base = current_base;

_event_debug_assert_not_added(ev);
//属于哪个event_base
ev->ev_base = base;
//事件回调函数
ev->ev_callback = callback;
//回调函数的参数
ev->ev_arg = arg;
//event关注哪个fd
ev->ev_fd = fd;
//event事件类型
ev->ev_events = events;
ev->ev_res = 0;
ev->ev_flags = EVLIST_INIT;
//被调用过几次
ev->ev_ncalls = 0;
ev->ev_pncalls = NULL;

if (events & EV_SIGNAL) {
if ((events & (EV_READ|EV_WRITE)) != 0) {
event_warnx("%s: EV_SIGNAL is not compatible with "
"EV_READ or EV_WRITE", __func__);
return -1;
}
ev->ev_closure = EV_CLOSURE_SIGNAL;
} else {
if (events & EV_PERSIST) {
evutil_timerclear(&ev->ev_io_timeout);
ev->ev_closure = EV_CLOSURE_PERSIST;
} else {
ev->ev_closure = EV_CLOSURE_NONE;
}
}

min_heap_elem_init(ev);

if (base != NULL) {
/* by default, we put new events into the middle priority */
//优先级的设置
ev->ev_pri = base->nactivequeues / 2;
}

_event_debug_note_setup(ev);

return 0;
}

event_assign内部实现可以看出该函数仅仅对event的属性进行设置

event_assign主要对event设置了listener_read_cb回调函数,这是

很重要的一个细节,我们看下listener_read_cb内部实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
static void
listener_read_cb(evutil_socket_t fd, short what, void *p)
{
struct evconnlistener *lev = p;
int err;
evconnlistener_cb cb;
evconnlistener_errorcb errorcb;
void *user_data;
LOCK(lev);
while (1) {
struct sockaddr_storage ss;
#ifdef WIN32
int socklen = sizeof(ss);
#else
socklen_t socklen = sizeof(ss);
#endif
//调用accept生成新的fd
evutil_socket_t new_fd = accept(fd, (struct sockaddr*)&ss, &socklen);
if (new_fd < 0)
break;
if (socklen == 0) {
/* This can happen with some older linux kernels in
* response to nmap. */
evutil_closesocket(new_fd);
continue;
}
//设置非阻塞
if (!(lev->flags & LEV_OPT_LEAVE_SOCKETS_BLOCKING))
evutil_make_socket_nonblocking(new_fd);

if (lev->cb == NULL) {
evutil_closesocket(new_fd);
UNLOCK(lev);
return;
}
++lev->refcnt;
//cb 就 是 listener_cb
cb = lev->cb;
user_data = lev->user_data;
UNLOCK(lev);
//触发了listener_cb

//完成了eventbuffer注册写和事件函数
cb(lev, new_fd, (struct sockaddr*)&ss, (int)socklen,
user_data);

LOCK(lev);
if (lev->refcnt == 1) {
int freed = listener_decref_and_unlock(lev);
EVUTIL_ASSERT(freed);
return;
}
--lev->refcnt;
}
。。。。。。。。。
}

在evconnlistener_new中
//evconnlistener_cb 设置为listener_cb
lev->base.cb = cb;

lev->base就是evconnlistener对象

listener_read_cb内部回调用绑定在evconnlistenerlistener_cb

记得之前我所说的绑定么?evconnlistener_new这个函数里生成的lev

之后对lev,这里的lev就是 evconnlistener_event对象,lev->listener是

event对象,通过调用event_assign(&lev->listener, base, fd, EV_READ|EV_PERSIST, listener_read_cb, lev);

lev->listener绑定的就是listener_read_cb。也就是是说

listener_read_cb调用后,从而调用了绑定在evconnlistenerlistener_cb

那么我们只要知道lev->listener(event对象)的读事件是如何派发的就可以梳理此

流程了。

之前我们梳理过event_dispatch里进行的事件派发,调用不同模型的dispatch,

稍后再梳理一遍。因为调用event_assign仅仅对event设置了属性,还没有加到

事件队列里。

evconnlistener_new函数里调用完event_assign,之后调用的是

evconnlistener_enable,evconnlistener_enable这个函数完成了事件

添加到事件队列的功能。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int
evconnlistener_enable(struct evconnlistener *lev)
{
int r;
LOCK(lev);
lev->enabled = 1;
if (lev->cb)
//调用evconnlistener 的ops的enable函数
//lev->ops 此时指向evconnlistener_event_ops
//enable函数为 event_listener_enable
r = lev->ops->enable(lev);
else
r = 0;
UNLOCK(lev);
return r;
}

上面有evconnlistener_event_ops结构体,那几个函数也列出来了。

我们看下event_listener_enable函数

1
2
3
4
5
6
7
8
9
static int
event_listener_enable(struct evconnlistener *lev)
{
//通过evconnlistener* 找到evconnlistener_event *
struct evconnlistener_event *lev_e =
EVUTIL_UPCAST(lev, struct evconnlistener_event, base);
//将
return event_add(&lev_e->listener, NULL);
}

里面调用了event_add

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//添加事件操作
int
event_add(struct event *ev, const struct timeval *tv)
{
int res;

if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) {
event_warnx("%s: event has no event_base set.", __func__);
return -1;
}

EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock);
//添加事件核心函数
res = event_add_internal(ev, tv, 0);

EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock);

return (res);
}

对于event_add内部判断是否枷锁,进行加锁,然后调用

event_add_internal完成事件添加

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
static inline int
event_add_internal(struct event *ev, const struct timeval *tv,
int tv_is_absolute)
{
struct event_base *base = ev->ev_base;
int res = 0;
int notify = 0;


//根据不同的事件类型将事件放到evmap里,调用不同模型的add函数
//将事件按照EV_READ或者EV_WRITE或者EV_SIGNAL放入evmap事件队列里
//将ev按照EVLIST_INSERTED放入用户的事件队列里
if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) &&
!(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) {
if (ev->ev_events & (EV_READ|EV_WRITE))
//将事件按照读写 IO方式加入evmap里,并且调用不同网络模型的add完成事件添加
res = evmap_io_add(base, ev->ev_fd, ev);
else if (ev->ev_events & EV_SIGNAL)
//将事件按照信号方式添加
res = evmap_signal_add(base, (int)ev->ev_fd, ev);
//将事件插入轮询的事件队列里
if (res != -1)
event_queue_insert(base, ev, EVLIST_INSERTED);
if (res == 1) {
/* evmap says we need to notify the main thread. */
notify = 1;
res = 0;
}
}
}

由于lev->listener(event)类型的事件是I/O 读事件,所以会进入evmap_io_add完成读事件的添加

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
int
evmap_io_add(struct event_base *base, evutil_socket_t fd, struct event *ev)
{
const struct eventop *evsel = base->evsel;
struct event_io_map *io = &base->io;
struct evmap_io *ctx = NULL;
int nread, nwrite, retval = 0;
short res = 0, old = 0;
struct event *old_ev;

EVUTIL_ASSERT(fd == ev->ev_fd);

if (fd < 0)
return 0;
//windows情况下use a hashtable instead of an array
#ifndef EVMAP_USE_HT
if (fd >= io->nentries) {
if (evmap_make_space(io, fd, sizeof(struct evmap_io *)) == -1)
return (-1);
}
#endif

//从io中找到下标为fd的结构体数据 evmap_io * 赋值给ctx
//如果没有找到就调用evmap_io_init初始化
GET_IO_SLOT_AND_CTOR(ctx, io, fd, evmap_io, evmap_io_init,
evsel->fdinfo_len);

nread = ctx->nread;
nwrite = ctx->nwrite;

if (nread)
old |= EV_READ;
if (nwrite)
old |= EV_WRITE;

if (ev->ev_events & EV_READ) {
if (++nread == 1)
res |= EV_READ;
}
if (ev->ev_events & EV_WRITE) {
if (++nwrite == 1)
res |= EV_WRITE;
}
......if (res) {
void *extra = ((char*)ctx) + sizeof(struct evmap_io);
/* XXX(niels): we cannot mix edge-triggered and
* level-triggered, we should probably assert on
* this. */
//这里就是调用了不同模型的demultiplexer的添加操作
//调用不同的网络模型add接口
if (evsel->add(base, ev->ev_fd,
old, (ev->ev_events & EV_ET) | res, extra) == -1)
return (-1);
retval = 1;
}

ctx->nread = (ev_uint16_t) nread;
ctx->nwrite = (ev_uint16_t) nwrite;
//哈希表对应的event事件队列加入ev
TAILQ_INSERT_TAIL(&ctx->events, ev, ev_io_next);

return (retval);
}

该函数内部的一些函数就不展开,挺好理解的。到此为止我们了解了listen描述符的回调函数和读事件的绑定。

回到main函数,看下event_base_dispatch就知道绑定在lev->listener(event)类型的读事件listener_read_cb

是如何派发的,进而在读事件里完成了evconnlistener的listener_cb的调用。

1
2
3
4
5
int
event_base_dispatch(struct event_base *event_base)
{
return (event_base_loop(event_base, 0));
}

int event_base_loop(struct event_base *base, int flags)这个函数内部

我们只看关键代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
int
event_base_loop(struct event_base *base, int flags)
{
  
  const struct eventop *evsel = base->evsel;
    //不同模型的派发函数
    //evsel就是指向ops数组的某一种模型


  res = evsel->dispatch(base, tv_p);

  
  if (N_ACTIVE_CALLBACKS(base)) {

    //处理激活队列中的事件
    int n = event_process_active(base);
    if ((flags & EVLOOP_ONCE)
      && N_ACTIVE_CALLBACKS(base) == 0
        && n != 0)
      done = 1;
    } else if (flags & EVLOOP_NONBLOCK)
      done = 1;



}

之前有说过evsel初始化和模型选择的代码,这里重新梳理下const struct eventop *evsel;

event_base_new或者event_init内部调用了event_base_new_with_config,

event_base_new_with_config函数调用了base->evsel = eventops[i];

eventops属主封装了几种模型结构体的指针

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
static const struct eventop *eventops[] = {
#ifdef _EVENT_HAVE_EVENT_PORTS
&evportops,
#endif
#ifdef _EVENT_HAVE_WORKING_KQUEUE
&kqops,
#endif
#ifdef _EVENT_HAVE_EPOLL
&epollops,
#endif
#ifdef _EVENT_HAVE_DEVPOLL
&devpollops,
#endif
#ifdef _EVENT_HAVE_POLL
&pollops,
#endif
#ifdef _EVENT_HAVE_SELECT
&selectops,
#endif
#ifdef WIN32
&win32ops,
#endif
NULL
};

举个例子,看下epollops

1
2
3
4
5
6
7
8
9
10
11
const struct eventop epollops = {
"epoll",
epoll_init,
epoll_nochangelist_add,
epoll_nochangelist_del,
epoll_dispatch,
epoll_dealloc,
1, /* need reinit */
EV_FEATURE_ET|EV_FEATURE_O1,
0
};

eventop 类型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
struct eventop {
/** The name of this backend. */
const char *name;

void *(*init)(struct event_base *);

int (*add)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo);

int (*del)(struct event_base *, evutil_socket_t fd, short old, short events, void *fdinfo);

int (*dispatch)(struct event_base *, struct timeval *);
/** Function to clean up and free our data from the event_base. */
void (*dealloc)(struct event_base *);

int need_reinit;

enum event_method_feature features;

size_t fdinfo_len;
};

epollops是eventop类型的变量,实现了增加删除,初始化,销毁,派发等功能

所以当模型选择epoll时,res = evsel->dispatch(base, tv_p);实际调用的是epoll的派发函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
static int epoll_dispatch(struct event_base *base, struct timeval *tv)
{

  struct epollop *epollop = base->evbase;
    struct epoll_event *events = epollop->events;

  res = epoll_wait(epollop->epfd, events, epollop->nevents, timeout);

  for (i = 0; i < res; i++) {
      int what = events[i].events;
      short ev = 0;

      if (what & (EPOLLHUP|EPOLLERR)) {
        ev = EV_READ | EV_WRITE;
      } else {
          if (what & EPOLLIN)
            ev |= EV_READ;
          if (what & EPOLLOUT)
          ev |= EV_WRITE;
        }

        if (!ev)
          continue;

        //更新evmap,并且将事件放入active队列
        evmap_io_active(base, events[i].data.fd, ev | EV_ET);
      }

}

`evmap_io_active函数内部调用event_active_nolock,event_active_nolock中调用

event_queue_insert(base, ev, EVLIST_ACTIVE);负责将event放入激活队列里,

并且更新event在evmap中的 标记状态。`

到目前为止我们了解了事件派发的流程,event_base_loop循环执行网络模型的dispatch,内核返回就绪事件,dispatch内部调用evmap_io_active将就绪事件放入激活队列里

在event_base_loop中调用event_process_active处理就绪队列中的event。比如内核返回listen描述符读就绪事件,那么就会将listen的event放入就绪队列中,

在event_process_active处理event的读事件,调用了之前绑定的listener_read_cb回调函数。

下面看下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
static int
event_process_active(struct event_base *base)
{
/* Caller must hold th_base_lock */
struct event_list *activeq = NULL;
int i, c = 0;
//循环处理就绪队列中的每一个就绪事件
for (i = 0; i < base->nactivequeues; ++i) {
if (TAILQ_FIRST(&base->activequeues[i]) != NULL) {
base->event_running_priority = i;
activeq = &base->activequeues[i];
c = event_process_active_single_queue(base, activeq);
if (c < 0) {
base->event_running_priority = -1;
return -1;
} else if (c > 0)
break;
}
}
//调用延时回调函数
event_process_deferred_callbacks(&base->defer_queue,&base->event_break);
base->event_running_priority = -1;
return c;
}

循环调用了event_process_active_single_queue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
switch (ev->ev_closure) {
case EV_CLOSURE_SIGNAL:
event_signal_closure(base, ev);
break;
case EV_CLOSURE_PERSIST:
event_persist_closure(base, ev);
break;
default:
case EV_CLOSURE_NONE:
EVBASE_RELEASE_LOCK(base, th_base_lock);
(*ev->ev_callback)(
ev->ev_fd, ev->ev_res, ev->ev_arg);
break;
}

(*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg);就是调用绑定在event上的回调函数。比如绑定在lev->listener(event)类型的读事件listener_read_cb;

从而调用了绑定在evconnlistener的listener_cb。

这样整个流程就跑通了。最上面有listener_cb函数的实现,整个消息传递流程不跟踪了,读者可以模仿上面的方式去跟踪消息。

这里简单表述下在bufferevent创建的时候调用了这个函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
struct bufferevent *
bufferevent_socket_new(struct event_base *base, evutil_socket_t fd,
int options)
{
struct bufferevent_private *bufev_p;
struct bufferevent *bufev;

...
    //设置bufferevent中 ev_read(event类型)回调函数
    event_assign(&bufev->ev_read, bufev->ev_base, fd,
    EV_READ|EV_PERSIST, bufferevent_readcb, bufev);
    //设置bufferevent中 ev_write(event类型)回调函数
    event_assign(&bufev->ev_write, bufev->ev_base, fd,
    EV_WRITE|EV_PERSIST, bufferevent_writecb, bufev);

    //为bufev->output(evbuffer类型)设置回调函数,回调函数内部将ev_write事件加入事件队列
    evbuffer_add_cb(bufev->output, bufferevent_socket_outbuf_cb, bufev);

   ...

return bufev;
}

函数内部为ev_read和ev_write 设置默认的回调函数bufferevent_readcb和bufferevent_writecb。接着为输出的 evbuffer绑定bufferevent_socket_outbuf_cb函数。

bufferevent_socket_outbuf_cb函数如果发现我们有可写的东西,并且没开始写,那么 将ev_

write事件加入event队列,跟上面的轮询一样,有可写就绪事件就会触发绑定在ev_write上的bufferevent-writecb函数。如果没有添加写的数据,就跳出函数。之后调用。由于这时处于bufferevent刚创建状态,那么说明没有数据写入bufferevent,所以这时是不会将ev_write加入event队列的。回到listener_cb函数。接着调用bufferevent_setcb 函数设置bufferevent的读,写,事件,

回调函数。

调用bufferevent_enable使写事件生效,

内部调用

bufev->be_ops->enable(bufev, impl_events);

bufferevent注册好的回调函数如下

1
2
3
4
5
6
7
8
9
10
const struct bufferevent_ops bufferevent_ops_socket = {
"socket",
evutil_offsetof(struct bufferevent_private, bev),
be_socket_enable,
be_socket_disable,
be_socket_destruct,
be_socket_adj_timeouts,
be_socket_flush,
be_socket_ctrl,
};
1
2
3
4
5
6
7
8
9
10
11
12
13
static int
be_socket_enable(struct bufferevent *bufev, short event)
{
if (event & EV_READ) {
if (be_socket_add(&bufev->ev_read,&bufev->timeout_read) == -1)
return -1;
}
if (event & EV_WRITE) {
if (be_socket_add(&bufev->ev_write,&bufev->timeout_write) == -1)
return -1;
}
return 0;
}

eventbuffer读写事件加入到event队列里,此处为添加ev_write写事件,当写事件就绪,

轮询可以出发绑定的bufferevent_writecb回调函数。

当调用bufferevent_writecb这个函数时,我们把内部代码简化分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
static void
bufferevent_writecb(evutil_socket_t fd, short event, void *arg)

{

//计算bufferevent能写的最大数量
atmost = _bufferevent_get_write_max(bufev_p);

if (bufev_p->write_suspended)
goto done;

if (evbuffer_get_length(bufev->output)) {
evbuffer_unfreeze(bufev->output, 1);
//bufferevent调用写操作,将outbuffer中的内容发送出去
res = evbuffer_write_atmost(bufev->output, fd, atmost);
evbuffer_freeze(bufev->output, 1);
if (res == -1) {
int err = evutil_socket_geterror(fd);
if (EVUTIL_ERR_RW_RETRIABLE(err))
goto reschedule;
what |= BEV_EVENT_ERROR;
} else if (res == 0) {
/* eof case
XXXX Actually, a 0 on write doesn't indicate
an EOF. An ECONNRESET might be more typical.
*/
what |= BEV_EVENT_EOF;
}
if (res <= 0)
goto error;
//bufferevent减少发送的大小,留下未发送的,下次再发送
_bufferevent_decrement_write_buckets(bufev_p, res);
}

//计算是否将outbuf中的内容发送完,发完了就删除写事件
if (evbuffer_get_length(bufev->output) == 0) {
event_del(&bufev->ev_write);
}

/*
* Invoke the user callback if our buffer is drained or below the
* low watermark.
*/
//将buffer中的内容发完,或者低于low 水位,那么调用用户注册的写回调函数
if ((res || !connected) &&
evbuffer_get_length(bufev->output) <= bufev->wm_write.low) {
_bufferevent_run_writecb(bufev);
}

}

_bufferevent_run_writecb内部调用了bufev->writecb(bufev, bufev->cbarg);也就是说我们自己实现的

1
2
3
4
5
6
7
8
9
static void
conn_writecb(struct bufferevent *bev, void *user_data)
{
struct evbuffer *output = bufferevent_get_output(bev);
if (evbuffer_get_length(output) == 0) {
printf("flushed answer\n");
bufferevent_free(bev);
}
}

到此为止整个bufferevent消息走向梳理出来。最后有一点需要陈述,在listener_cb中最后调用bufferevent_write(bev, MESSAGE, strlen(MESSAGE));

`其内部调用evbuffer_add,该函数内部evbuffer_invoke_callbacks(buf);会调用bufferevent_socket_outbuf_cb,进而调用

bufferevent_write。`

所以我认为是调用evbuffer_add向outbuf中添加数据后,调用了evbuffer_invoke_callbacks,触发bufferevent_write, 或者ev_write先检测到写就绪事件,然后调用buffervent_write.这两者先后并不清楚

整个流程就是这样,需要继续研究然后梳理。