谈谈golang的netpoll原理(二)

接上文我们查看了bind和listen流程,直到了listen操作会在内核初始化一个epoll表,并将listen的描述符加入到epoll表中

如何保证epoll表初始化一次

前文我们看到pollDesc的init函数中调用了runtime的pollOpen函数完成的epoll创建和描述符加入,这里再贴一次代码

1
2
3
4
5
6
7
8
9
10
11
12
13
func (pd *pollDesc) init(fd *FD) error {
serverInit.Do(runtime_pollServerInit)
ctx, errno := runtime_pollOpen(uintptr(fd.Sysfd))
if errno != 0 {
if ctx != 0 {
runtime_pollUnblock(ctx)
runtime_pollClose(ctx)
}
return errnoErr(syscall.Errno(errno))
}
pd.runtimeCtx = ctx
return nil
}

runtime_pollServerInit link的是runtime/netpoll.go中的poll_runtime_pollServerInit函数
由于serverInit是sync.Once类型,所以runtime_pollServerInit只被初始化一次,而epoll模型的初始化就是在该函数完成

1
2
3
4
5
6
7
8
9
10
11
12
13
14
func poll_runtime_pollServerInit() {
netpollGenericInit()
}

func netpollGenericInit() {
if atomic.Load(&netpollInited) == 0 {
lock(&netpollInitLock)
if netpollInited == 0 {
netpollinit()
atomic.Store(&netpollInited, 1)
}
unlock(&netpollInitLock)
}
}

netpollinit实现了不同模型的初始化,epoll的实现在runtime/netpoll_epoll.go中

1
2
3
4
5
6
7
8
9
10
11
12
func netpollinit() {
epfd = epollcreate1(_EPOLL_CLOEXEC)
if epfd < 0 {
epfd = epollcreate(1024)
if epfd < 0 {
println("runtime: epollcreate failed with", -epfd)
throw("runtime: netpollinit failed")
}
closeonexec(epfd)
}
//...
}

可以看到上述代码里实现了epoll模型的初始化,所以对于一个M主线程只会初始化一张epoll表,所有要监听的文件描述符都会放入这个表中。

跟随accept看看goroutine挂起逻辑

当我们调用Listener的Accept时,Listener为接口类型,实际调用的为TCPListener的Accept函数

1
2
3
4
5
6
7
8
9
10
func (l *TCPListener) Accept() (Conn, error) {
if !l.ok() {
return nil, syscall.EINVAL
}
c, err := l.accept()
if err != nil {
return nil, &OpError{Op: "accept", Net: l.fd.net, Source: nil, Addr: l.fd.laddr, Err: err}
}
return c, nil
}

Accept内部调用了accept函数,该函数内部实际调用netFD的accept

1
2
3
4
5
6
7
func (ln *TCPListener) accept() (*TCPConn, error) {
fd, err := ln.fd.accept()
if err != nil {
return nil, err
}
//...
}

在net/fd_unix.go中实现了linux环境下accept的操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
func (fd *netFD) accept() (netfd *netFD, err error) {
d, rsa, errcall, err := fd.pfd.Accept()
if err != nil {
if errcall != "" {
err = wrapSyscallError(errcall, err)
}
return nil, err
}

if netfd, err = newFD(d, fd.family, fd.sotype, fd.net); err != nil {
poll.CloseFunc(d)
return nil, err
}
if err = netfd.init(); err != nil {
netfd.Close()
return nil, err
}
lsa, _ := syscall.Getsockname(netfd.pfd.Sysfd)
netfd.setAddr(netfd.addrFunc()(lsa), netfd.addrFunc()(rsa))
return netfd, nil
}

上述函数内部调用的是net/fd_unix.go内部实现的Accept函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
func (fd *FD) Accept() (int, syscall.Sockaddr, string, error) {
if err := fd.readLock(); err != nil {
return -1, nil, "", err
}
defer fd.readUnlock()

if err := fd.pd.prepareRead(fd.isFile); err != nil {
return -1, nil, "", err
}
for {
s, rsa, errcall, err := accept(fd.Sysfd)
if err == nil {
return s, rsa, "", err
}
switch err {
case syscall.EAGAIN:
if fd.pd.pollable() {
if err = fd.pd.waitRead(fd.isFile); err == nil {
continue
}
}
case syscall.ECONNABORTED:
// This means that a socket on the listen
// queue was closed before we Accept()ed it;
// it's a silly error, so try again.
continue
}
return -1, nil, errcall, err
}
}

上述函数就是tcp底层的函数了,accept(fd.Sysfd)监听fd.Sysfd描述符,等待可读事件到来,当可读事件到来后,就可以认为来了一个新的连接,从而创建一个新的描述符给新的连接。
当accept出现错误时,需要判断err类型,如果是EAGAIN说明当前没有连接到来,就调用waitRead等待连接,ECONNABORTED说明连接还未accept就断开了,可以忽略。

1
2
3
func (pd *pollDesc) waitRead(isFile bool) error {
return pd.wait('r', isFile)
}

进而调用pollDesc的wait操作

1
2
3
4
5
6
7
func (pd *pollDesc) wait(mode int, isFile bool) error {
if pd.runtimeCtx == 0 {
return errors.New("waiting for unsupported file type")
}
res := runtime_pollWait(pd.runtimeCtx, mode)
return convertErr(res, isFile)
}

wait函数中判断pd的runtime上下文是否正常,然后调用runtime包的poll_runtime_pollWait实现挂起等待

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
func poll_runtime_pollWait(pd *pollDesc, mode int) int {
err := netpollcheckerr(pd, int32(mode))
if err != 0 {
return err
}
if GOOS == "solaris" || GOOS == "illumos" || GOOS == "aix" {
netpollarm(pd, mode)
}
for !netpollblock(pd, int32(mode), false) {
err = netpollcheckerr(pd, int32(mode))
if err != 0 {
return err
}
}
return 0
}

poll_runtime_pollWait运行在内核M线程中,轮询调用netpollblock,所以内核M线程一直在轮询检测netpollblock返回值,当其返回true时循环就可以退出,从而用户态协程就可以继续运行了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func netpollblock(pd *pollDesc, mode int32, waitio bool) bool {
gpp := &pd.rg
if mode == 'w' {
gpp = &pd.wg
}

// set the gpp semaphore to WAIT
for {
old := *gpp
if old == pdReady {
*gpp = 0
return true
}
if old != 0 {
throw("runtime: double wait")
}
if atomic.Casuintptr(gpp, 0, pdWait) {
break
}
}
if waitio || netpollcheckerr(pd, mode) == 0 {
gopark(netpollblockcommit, unsafe.Pointer(gpp), waitReasonIOWait, traceEvGoBlockNet, 5)
}
old := atomic.Xchguintptr(gpp, 0)
if old > pdWait {
throw("runtime: corrupted polldesc")
}
return old == pdReady
}

netpollblock内部根据读模式还是写模式,获取pollDesc成员变量的读协程或者写协程地址,然后判断其状态是否为pdReady,这里要详细说一下,golang阻塞一个用户态协程是要将其状态设置为0(正在运行)或者pdWait(阻塞),这里为0,所以逻辑继续往下走,之后做了一个原子操作将gpp设置为pdWait状态,接着根据这个状态,执行gopark函数,阻塞住用户态协程。当内核想激活用户协程时gopark会返回,然后该函数判断gpp是否为pdReady,从而激活用户态协程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
if reason != waitReasonSleep {
checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
}
mp := acquirem()
gp := mp.curg
status := readgstatus(gp)
if status != _Grunning && status != _Gscanrunning {
throw("gopark: bad g status")
}
mp.waitlock = lock
mp.waitunlockf = unlockf
gp.waitreason = reason
mp.waittraceev = traceEv
mp.waittraceskip = traceskip
releasem(mp)
// can't do anything that might move the G between Ms here.
mcall(park_m)
}

gopark将用户态协程放在等待队列中,然后调用mcall触发汇编代码。之后会检测调用unlockf函数,如果unlockf返回false则说明可以解锁用户态协程了。另外官网的注释说unlockf不要访问用户态协程的stack,因为G’s stack可能会在gopark和unlockf之间被移除。到目前为止,我们理解了用户态协程挂起原理。

epoll就绪后如何激活用户态协程

想知道如果激活挂起的用户态协程,就要先看看epoll_wait判断就绪事件后怎么处理的。runtime/netpoll_epoll.go中实现了epollwait逻辑

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
func netpoll(delay int64) gList {
if epfd == -1 {
return gList{}
}
//...
var events [128]epollevent
retry:
n := epollwait(epfd, &events[0], int32(len(events)), waitms)
if n < 0 {
if n != -_EINTR {
println("runtime: epollwait on fd", epfd, "failed with", -n)
throw("runtime: netpoll failed")
}
// If a timed sleep was interrupted, just return to
// recalculate how long we should sleep now.
if waitms > 0 {
return gList{}
}
goto retry
}
var toRun gList
for i := int32(0); i < n; i++ {
ev := &events[i]
if ev.events == 0 {
continue
}
//...
var mode int32
if ev.events&(_EPOLLIN|_EPOLLRDHUP|_EPOLLHUP|_EPOLLERR) != 0 {
mode += 'r'
}
if ev.events&(_EPOLLOUT|_EPOLLHUP|_EPOLLERR) != 0 {
mode += 'w'
}
if mode != 0 {
pd := *(**pollDesc)(unsafe.Pointer(&ev.data))
pd.everr = false
if ev.events == _EPOLLERR {
pd.everr = true
}
netpollready(&toRun, pd, mode)
}
}
return toRun
}

可以看出netpoll函数调用epollwait返回就绪事件列表,然后遍历就绪的事件列表,从事件类型中取出pollDesc数据,调用netpollready将曾经挂起的协程放入gList中,然后返回该列表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
func netpollready(toRun *gList, pd *pollDesc, mode int32) {
var rg, wg *g
if mode == 'r' || mode == 'r'+'w' {
rg = netpollunblock(pd, 'r', true)
}
if mode == 'w' || mode == 'r'+'w' {
wg = netpollunblock(pd, 'w', true)
}
if rg != nil {
toRun.push(rg)
}
if wg != nil {
toRun.push(wg)
}
}

netpollready调用了unblock函数,并且将协程写入glist中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
func netpollunblock(pd *pollDesc, mode int32, ioready bool) *g {
gpp := &pd.rg
if mode == 'w' {
gpp = &pd.wg
}

for {
old := *gpp
if old == pdReady {
return nil
}
if old == 0 && !ioready {
// Only set READY for ioready. runtime_pollWait
// will check for timeout/cancel before waiting.
return nil
}
var new uintptr
if ioready {
new = pdReady
}
if atomic.Casuintptr(gpp, old, new) {
if old == pdReady || old == pdWait {
old = 0
}
return (*g)(unsafe.Pointer(old))
}
}
}

netpollunblock函数修改pd所在协程的状态为0,表示可运行状态,所以netpoll函数内部做了这样几件事,根据就绪事件列表找到对应的协程,将挂起的协程状态设置为0表示可运行,然后将该协程放入glist中。在runtime/proc.go中findrunnable会判断是否初始化epoll,如果初始化了则调用netpoll,从而获取glist,然后traceGoUnpark激活挂起的协程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
func findrunnable() (gp *g, inheritTime bool) {
_g_ := getg()
//...
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
if list := netpoll(0); !list.empty() { // non-blocking
gp := list.pop()
injectglist(&list)
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
}
//...
}

以上就是golang网络调度和协程控制的原理,golang通过epoll和用户态协程调度结合的方式,实现了高并发的网络处理,这种思路是值得日后我们设计产品借鉴的。
感谢关注我的公众号
wxgzh.jpg